向量a在向量b上的投影向量

这是一个公式:a 在 b 上的投影为 a*b/|b|

也就是:在哪个向量上投影,就乘以哪个向量的单位向量。

向量a在向量b上的投影怎么求

用向量a的模乘以两个向量所成的角的余弦值就可以了

|a|*cos

a在b方向上的投影公式是什么?

a在b方向上的投影公式:向量a·向量b=|a|*|b|*cosΘ(Θ为两向量夹角),|b|*cosΘ叫做向量b在向量a上的投影,|a|*cosΘ叫做向量a在向量b上的投影。

一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。

应用

从初中数学的角度来说,一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。

有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。由平行光线形成的投影是平行投影。由同一点(点光源发出的光线)形成的投影叫做中心投影。

投影线垂直于投影面产生的投影叫做正投影。投影线不垂直于投影面产生的投影叫做斜投影。物体投影的形状、大小与它相对于投影面的位置和角度有关。

向量a在向量b上的投影公式是什么?

| a |*cosΘ叫做向量a在向量b上的投影

向量a·向量b=| a |*| b |*cosΘ(Θ为两向量夹角)

| b |*cosΘ叫做向量b在向量a上的投影

投影 (tóuyǐng),数学术语,指图形的影子投到一个面或一条线上。

扩展资料:

a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)

也可以这样定义(等效):

向量积|c|=|a×b|=|a||b|sin

即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。

而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。

参考资料来源:百度百科-向量积

a在b方向上的投影公式是怎么样的?

| a |*cosΘ叫做向量a在向量b上的投影

向量a·向量b=| a |*| b |*cosΘ(Θ为两向量夹角)

| b |*cosΘ叫做向量b在向量a上的投影

投影 (tóuyǐng),数学术语,指图形的影子投到一个面或一条线上。

扩展资料

与a长度相等、方向相反的向量叫做a的相反向量,记作-a,有 -(-a)=a,零向量的相反向量仍是零向量。

方向相同或相反的非零向量叫做平行(或共线)向量.向量a、b平行(共线),记作a∥b。零向量长度为零,是起点与终点重合的向量,其方向不确定。我们规定:零向量与任一向量平行。平行于同一直线的一组向量是共线向量。

若a=(x,y),b=(m,n),则a//b→a×b=xn-ym=0