一、大学常用极限公式有哪些
极限公式:
1、e^x-1~x (x→0)
2、 e^(x^2)-1~x^2 (x→0)
3、1-cosx~1/2x^2 (x→0)
4、1-cos(x^2)~1/2x^4 (x→0)
5、sinx~x (x→0)
6、tanx~x (x→0)
7、arcsinx~x (x→0)
8、arctanx~x (x→0)
9、1-cosx~1/2x^2 (x→0)
10、a^x-1~xlna (x→0)
11、e^x-1~x (x→0)
12、ln(1+x)~x (x→0)
13、(1+Bx)^a-1~aBx (x→0)
14、[(1+x)^1/n]-1~1/nx (x→0)
15、loga(1+x)~x/lna(x→0)
扩展资料:
高等数学极限中有“两个重要极限”的说法,指的是:
sinX/x →1( x→0 ),
与 (1+1/x)^x→e^x( x→∞)
另外,关于等价无穷小,有:
sinx ~ tanx ~ arctanx ~ arcsinx ~ e^x-1 ~ ln(1+X)
~ (a^x-1)/lna ~[(1+x)^a-1]/a ~x( x→0),
1-cosx ~ x^2/2( x→0)。
二、lim极限函数公式总结是什么?
求极限lim的常用公式有:
1、lim(f(x)+g(x))=limf(x)+limg(x);
2、lim(f(x)-g(x))=limf(x)-limg(x);
3、lim(f(x)×g(x))=limf(x)×limg(x);
4、lim(f(x)/g(x))=limf(x)/limg(x)limg(x)不等于0;
5、lim(f(x))^n=(limf(x))^n。
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。
2、利用恒等变形消去零因子(针对于0/0型)。
3、利用无穷大与无穷小的关系求极限。
4、利用无穷小的性质求极限。
5、利用等价无穷小替换求极限,可以将原式化简计算。
三、lim极限函数公式总结有哪些?
lim极限函数公式总结:lim((sinx)/x)=1(x->0)。
两个重要极限:
设{xn}为一个无穷实数数列的集合。如果存在实数a,对于任意正数ε (不论其多么小),都N>0,使不等式|xn-a|<ε在n∈(N,+∞)上恒成立,那么就称常数a是数列{xn} 的极限,或称数列{xn}收敛于a。
如果上述条件不成立,即存在某个正数ε,无论正整数N为多少,都存在某个n>N,使得|xn-a|≥a,就说数列{xn}不收敛于a;如果{xn}不收敛于任何常数,就称{xn}发散。
求极限基本方法有:
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。
2、无穷大根式减去无穷大根式时,分子有理化。
3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
四、求极限lim的常用公式
求极限lim的常用公式有:
1、lim(f(x)+g(x))=limf(x)+limg(x);
2、lim(f(x)-g(x))=limf(x)-limg(x);
3、lim(f(x)×g(x))=limf(x)×limg(x);
4、lim(f(x)/g(x))=limf(x)/limg(x)limg(x)不等于0;
5、lim(f(x))^n=(limf(x))^n。
注意:limf(x)limg(x)都存在时才成立。
lim是极限,是微积分中的基础概念,指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的值(极限值)。极限可分为数列极限和函数极限。
lim由1786年瑞士数学家鲁易理首次引入,后人不断完善,发展了长达132年之久,由英国数学家哈代的完善极限符号才成为今天通用的符号。
五、极限公式是什么呢?
1、第一个重要极限的公式:
lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1。
特别注意的是x→∞时,1 / x是无穷小,无穷小的性质得到的极限是0。
2、第二个重要极限的公式:
lim (1+1/x) ^x = e(x→∞)当x→∞时,(1+1/x)^x的极限等于e;或当x→0时,(1+x)^(1/x)的极限等于e。
求极限基本方法有:
1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入。
2、无穷大根式减去无穷大根式时,分子有理化。
3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。
六、极限中有哪些重要极限公式?
主要是两个重要极限。